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Percolation on a general tree is studied. A general tree is used to model the 
transition from HIV infection into AIDS and to explain the large differences of 
the transition time from one patient to another. HIV has some autoimmune 
effects due to its low antigenic mutants. Fuzzy mathematics is used to explain 
these effects. 

1. BASIC C O N C E P T S  

Percolation (Aharony and Stauffer, 1992) on homogeneous trees, where 
the number of  nearest neighbors Zi is independent o f  the site (Zi = z), is an 
important problem, with many applications. However, some cases need to 
be modeled on general trees. In this section this problem is studied. In Section 
2 it will be applied to the transition from HIV (human immunodeficiency 
virus) disease to AIDS (acquired immune deficiency syndrome). In Section 
3 some autoimmune aspects of  HIV will be studied using fuzzy concepts 
(Klir and Folger, 1988). 

We begin by giving some basic definitions: 
A vertex set is a set of  points (objects) called sites. 
An edge or l~ranch is a pair of  distinct vertices (sites). Therefore any 

two vertices (sites) in a graph a, b are either connected by a set of  edges, 
e.g., act, ctc2 . . . . .  cnb (in this case they are called connected) or not (in this 
case they are called disconnected or disjoint). I f  b = a, then the set of  edges 
act, ClC2 . . . . .  cna is called a loop. 

A tree is a graph with no loops. The coordination number Z~ of a site 
s is the number of  edges of  the form sa. If  Z~ = Z for all sites in a tree, 
then it is called a homogeneous  (Cayley) tree, otherwise it is called an 
inhomogeneous one. Examples are shown in Fig. 1. 
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(a) (b) 
Fig. 1. (a) An example of a homogeneous (Z = 3) tree. (b) An inhomogeneous tree. 

In percolation (Aharony and Stauffer, 1992), a flow (e.g., of  a fluid, 
electric current, infectious disease, etc.) on a graph is studied. The sites of 
the graph are either conducting (or occupied) with probability p or noncon- 
ducting (empty). 

The question is whether or not the flow can cross the graph. If p is 
small, then most of  the sets are empty, hence the flow cannot cross the graph. 
The critical concentration Pc is the minimum value of p for which the graph 
becomes conducting. 

To evaluate the critical concentration Pc, we use the number of  outgoing 
branches from site i, Zi - 1; hence the average number of  open branches 
from site i is p ( Z i  - 1). In order for the site to belong to an infinite cluster 
this quantity should exceed unity, thus the critical concentration is 

Pc = max{ 1/(z i  - 1)} (1) 
i 

To find the probability that an occupied site belongs to an infinite cluster 
l-l, let Qj be the probability that the site j does not belong to an infinite 
cluster along a given branch, where site j is a nearest neighbor (nn) to site 
i, then 

Qj = I - p + p ~ Qk (2) 
k~i  

where p is the probability that a site is occupied and k runs over the set of 
all nn o f j  other than i. The quantity p - f l  is the probability that a site is 
occupied and belongs to a finite cluster; therefore 

p - n = p l-I Qj (3) 
J 

Equations (2) and (3) determine f l .  
When Zi  = z the familiar equations for Q are regained, 

Q = 1 - p + p Q Z - ~ ,  p - l ' ~  =pQZ (4) 
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2. GENERAL TREES AND MODELING HIV-AIDS  
TRANSITION 

Recent evidence (Nowak and McMichail, 1995) indicates that one of 
the reasons HIV is able to defeat the immune system (IS) is its high ability 
to mutate. Consequently, although the IS is able initially to combat HIV, 
some mutants with low antigenicity are able to escape (at least for a while). 
Therefore the IS response to these mutants is both delayed and diluted (as 
will be discussed in the next section) while the virus continues infecting T- 
helper cells. This process is continued until the number of T-helper cells is 
reduced to approximately 20% of their normal level, where HIV infection 
becomes full-blown AIDS. 

We use general trees to model this transition as follows: we model IS 
clones by sites of a tree. Assume that clone j has recognized the HIV virus. 
To avoid the IS effects, the virus mutates. The mutant with highest survival 
probability is one that corresponds to nn of site j with lowest number of nn 
of its own. Mathematically it corresponds to the site k which is nn of si tej  and 

min(Z0 < min(Zu) (5) 
v~j u~k 

where v(u) runs over all nn of k(j). 
It is known (de Boer and Perelson, 1991) that approximately 80% of 

IS sites have 10-40 nn, while the remaining 20% have much fewer. We call 
them relatively isolated. Therefore it is almost always possible for a mutant 
to reach one of these relatively isolated sites where the mutants overcome 
the IS. Using the language of percolation, it is required to study the time 
needed to go from an arbitrary point in the cluster to its peripheral. 

We do not know of any analytical study of this problem; therefore 
computer simulation will be used. 

The system is simulated by assigning numbers of nn randomly to one- 
dimensional sites such that the probability of having 10 < Z < 40 is 80%, 
which agrees with observations. Mutants are allowed to move to nn until a 
relatively isolated site is reached. The number of moves is a measure of the 
transition time from HIV infection to AIDS. The results are given in Table 
I. It shows that the transition times vary greatly from one case to another. 
This agrees with observations (Nowak and McMichail, 1995). 

Table I 

Number of Moves I 2 3 4 5 ->6 
Frequency 45% 20% 9% 7% 9% 10% 
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3. L O W  ANTIGENICITY, AUTOIMMUNITY, AND FUZZY 
CONCEPTS 

Impression and uncertainty are intrinsic concepts in biosystems. Immu- 
nology (Benjamini and Leskowitz, 1989) is no exception. One of the most 
important tasks of the immune system is pattern recognition, i.e., distinguish- 
ability between self and nonself. However, it is known that some foreign 
antigens have the ability to mimic self ones. This is one of the proposed 
mechanisms for autoimmune responses (AIR) of the immune system. A 
similar case appears for tumors with low antigenicity. Therefore pattern 
recognition should be considered as a fuzzy process. 

Fuzzy pattern recognition has been studied mathematically (Bezdek and 
Pal, 1992); however it has not been applied to immunology. In this work 
such an application is attempted. 

In ordinary sets an element x either belongs or does not belong to a 
given set A. In fuzzy sets (Klir and Folger, 1988) there is a membership map 
0 < m(x) < 1 which determines how much x belongs to A. A value m(x) = 

0 (1) means that x does not (does) belong to A. This fuzzy concept agrees 
more with our everyday terminology, e.g., high, low, similar, dissimilar etc. 
Most operations on ordinary sets can be generalized to fuzzy ones. 

Now let us apply the fuzzy concept to the discrete model for the IS of 
Chowdhury et al. (1990). There are five variables A, B, H, S, and V represent- 
ing the concentrations of antibody, B-cells, helper cells, suppressors, and the 
antigen, respectively. Here we consider only the lymphocyte clone with 
highest affinity to the antigen. Using a cellular automaton approach, we have 
that these variables usually take two values, 0 (low concentration) and 1 
(high or normal concentration). The equations are 

A = V a n d B a n d H  

S = S o r H  

H = IV and (not S)] or H (6) 

B =  (VorB)  a n d H  

V =  V a n d n o t A  

In this model it is implicitly assumed that the antigen is totally nonself. 
But what about antigens with some self characters? A similarity grade 0 --< 
m(V) --< 1 is attributed to the antigen V such that m(V) = 0 (1) means that 
the antigen is totally foreign (self). The fuzzy case m(V) = 0.5 will be 
considered. It represents an antigen trying to mimic self antigen or an immune 
tumor trying to evade immune response. The equations for the fuzzy case 0 
<m(V)  < 1 are 
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A = min{ V, B, H} 

V = V'fa.o 

S = max{S, H} 

B = min{H, max(V, B)} 

H = max{H, V'Ss.o} 

(7) 

where ~ is the Kronecker delta function, 

1, i = j  
~i'Y= 0, i 4 : j  

For the nonfuzzy case m(V) = 0 or 1 the five steady states of Chowdhury 
et  al. are regained. They are [denoted by (V, B, H, S, A)] (1) the virgin 
(0, 0, 0, 0, 0), (2) low-dose paralysis (0, 0, 0, 1, 0), (3) vaccinated (0, 0, 1, 
1, 0), (4) memory (0, 1, 1, 1, 0), and (5) high-dose paralysis ( 1, 0, 0, 1,0) states. 

For the fuzzy case re(V) = 0.5 two additional pathogenic steady states 
have been found: (6) (0, 0, 0.5, 0.5, 0), which we expect to be related to 
autoimmune diseases, since suppression is below normal, which allow self- 
reactive cells to operate, and (7) (0, 0.5, 1, 1, 0), which represents normal 
level for T-lymphocytes but below normal for B ones. It will be interesting 
to relate these additional states to known diseases. 

4. S U M M A R Y  

Percolation on a general tree has been studied and used to model the 
HIV-AIDS transition. The model shows the observed wide range of transition 
times. The low antigenicity of HIV mutants (Nowak, 1995) causes some 
autoimmune effects that can be explained using fuzzy concepts. 
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